Search This Blog

Sunday, June 10, 2018

Dispelling the Myth: Training in Education or Neuroscience Decreases but Does Not Eliminate Beliefs in Neuromyths

From Frontiers in Psychology

By Kelly MacdonaldLaura Germine, Alida Anderson, Joanna Christodoulou and Lauren M. McGrath
August 10, 2017

Neuromyths are misconceptions about brain research and its application to education and learning. Previous research has shown that these myths may be quite pervasive among educators, but less is known about how these rates compare to the general public or to individuals who have more exposure to neuroscience.

This study is the first to use a large sample from the United States to compare the prevalence and predictors of neuromyths among educators, the general public, and individuals with high neuroscience exposure.

Neuromyth survey responses and demographics were gathered via an online survey hosted at TestMyBrain.org. We compared performance among the three groups of interest: educators (N = 598), high neuroscience exposure (N = 234), and the general public (N = 3,045) and analyzed predictors of individual differences in neuromyths performance.

In an exploratory factor analysis, we found that a core group of 7 “classic” neuromyths factored together (items related to learning styles, dyslexia, the Mozart effect, the impact of sugar on attention, right-brain/left-brain learners, and using 10% of the brain).

The general public endorsed the greatest number of neuromyths (M = 68%), with significantly fewer endorsed by educators (M = 56%), and still fewer endorsed by the high neuroscience exposure group (M = 46%). The two most commonly endorsed neuromyths across all groups were related to learning styles and dyslexia.

More accurate performance on neuromyths was predicted by age (being younger), education (having a graduate degree), exposure to neuroscience courses, and exposure to peer-reviewed science.

These findings suggest that training in education and neuroscience can help reduce but does not eliminate belief in neuromyths. We discuss the possible underlying roots of the most prevalent neuromyths and implications for classroom practice.

These empirical results can be useful for developing comprehensive training modules for educators that target general misconceptions about the brain and learning.

Introduction

Educational neuroscience (also known as mind, brain, education science) is an emerging field that draws attention to the potential practical implications of neuroscience research for educational contexts. This new field represents the intersection of education with neuroscience and the cognitive and developmental sciences, among other fields, in order to develop evidence-based recommendations for teaching and learning (Fischer et al., 2010).


This emerging field has garnered growing interest (i.e., Gabrieli, 2009; Carew and Magsamen, 2010; Sigman et al., 2014), but it is also widely recognized that attempts to create cross-disciplinary links between education and neuroscience may create opportunities for misunderstanding and miscommunication (Bruer, 1997; Goswami, 2006; Bowers, 2016).

In the field of educational neuroscience, some of the most pervasive and persistent misunderstandings about the function of the brain and its role in learning are termed “neuromyths” (OECD, 2002).

The Brain and Learning project of the UK's Organization of Economic Co-operation and Development (OECD) drew attention to the issue of neuromyths in 2002, defining a neuromyth as “a misconception generated by a misunderstanding, a misreading, or a misquoting of facts scientifically established (by brain research) to make a case for the use of brain research in education or other contexts” (OECD, 2002).


Neuromyths often originate from overgeneralizations of empirical research. For example, the neuromyth that people are either “left-brained” or “right-brained” partly stems from findings in the neuropsychological and neuroimaging literatures demonstrating the lateralization of some cognitive skills (i.e., language).

The fact that some neuromyths are vaguely based on empirical findings that have been misunderstood or over-exaggerated can make some neuromyths difficult to dispel.

There are several factors that contribute to the emergence and proliferation of neuromyths, most notably:

  • (1) differences in the training background and professional vocabulary of education and neuroscience (Howard-Jones, 2014),
  • (2) different levels of inquiry spanning basic science questions about individual neurons to evaluation of large-scale educational policies (Goswami, 2006),
  • (3) inaccessibility of empirical research behind paywalls which fosters increased reliance on media reports rather than the original research (Ansari and Coch, 2006),
  • (4) the lack of professionals and professional organizations trained to bridge the disciplinary gap between education and neuroscience (Ansari and Coch, 2006; Goswami, 2006), and,

Many leaders in the field have pointed out the potential benefits of bidirectional collaborations between education and neuroscience (Ansari and Coch, 2006; Goswami, 2006; Howard-Jones, 2014), but genuine progress will require a shared foundation of basic knowledge across both fields. One first step in this pursuit should be dispelling common neuromyths.

Toward this end, we launched the current study to identify and quantify neuromyths that persist in educational circles and to test whether these myths are specific to educators or whether they persist in the general public and in those with high exposure to neuroscience as well. The goal of this study was to provide empirical guidance for teacher preparation and professional development programs.

The existence of neuromyths has been widely acknowledged in both the popular press (i.e., Busch, 2016; Weale, 2017) and in the educational neuroscience field (Ansari and Coch, 2006; Goswami, 2006, 2008; Geake, 2008; Pasquinelli, 2012), which has prompted research efforts to quantify teachers' beliefs in neuromyths across countries and cultures. Most of these studies suggest that the prevalence of neuromyths among educators may be quite high (Dekker et al., 2012; Simmonds, 2014).


For example, Dekker et al. (2012) administered a neuromyths survey to primary and secondary school teachers throughout regions of the UK and the Netherlands and found that, on average, teachers believed about half of the myths (Dekker et al., 2012). Persistent neuromyths included the idea that students learn best when they are taught in their preferred learning style (i.e., VAK: visual, auditory, or kinesthetic; Coffield et al., 2004; Pashler et al., 2008), the idea that students should be classified as either “right-brained” or “left-brained,” and the idea that motor coordination exercises can help to integrate right and left hemisphere function.

Surprisingly, they found that educators with more general knowledge about the brain were also more likely to believe neuromyths (Dekker et al., 2012). This finding that more general brain knowledge was related to an increased belief in neuromyths is surprising.

One potential explanation is that teachers who are interested in learning about the brain may be exposed to more misinformation and/or may misunderstand the content such that they end up with more false beliefs. However, it is equally possible that teachers who believe neuromyths may seek out more information about the brain.

To date, the largest study of educators (N = 1,200) was conducted in the UK by the Wellcome Trust using an online survey of neuromyths (Simmonds, 2014). Consistent with the results of Dekker et al. (2012), Simmonds et al. found that the learning styles neuromyth was the most pervasive with 76% of educators indicating that they currently use this approach in their practice.


The next most frequently endorsed neuromyth was left/right brain learning with 18% of educators reporting that they are currently using this idea in their practice (Simmonds, 2014). These results clearly indicate that neuromyths continue to persist among educators and are being used in current practice.

Additional studies utilizing similar surveys of neuromyths have been conducted with samples of teachers in Greece (Deligiannidi and Howard-Jones, 2015), Turkey (Karakus et al., 2015), China (Pei et al., 2015), and Latin America (Gleichgerrcht et al., 2015). Similar patterns of neuromyth endorsement have emerged across this body of literature. Two of the most pervasive myths across countries have been related to learning styles and left-brain/right-brain learning.

The global proliferation of neuromyths among educators is concerning as many of the neuromyths are directly related to student learning and development, and misconceptions among educators could be deleterious for student outcomes. For example, if an educator believes the myth that dyslexia is caused by letter reversals, students who have dyslexia but do not demonstrate letter reversals might not be identified or provided appropriate services.


Another harmful consequence of neuromyths is that some “brain-based” commercialized education programs are based on these misconceptions and have limited empirical support. School districts that are unfamiliar with neuromyths may devote limited time and resources to such programs, which could have otherwise been used for empirically-validated interventions. Thus, it is important to obtain additional data about the prevalence and predictors of neuromyths in order to design effective approaches for dispelling these myths.

Available studies examining the prevalence of neuromyths provide information about neuromyth endorsement from a range of countries and cultures; however, no study to date has compared teachers' beliefs in neuromyths to a group of non-educators. Furthermore, to our knowledge, no study has systematically examined neuromyths in a sample from the United States.


Given large variations in teacher preparation across countries, it is worthwhile to explore the prevalence of neuromyths in a US sample. For this reason, the current study recruited a US sample of educators and included a comparison group of individuals from the general public. We also included a second comparison group of individuals with high neuroscience exposure to further contextualize the results from the groups of educators and general public.

Notably, most previous studies have used samples of educators in the range of N = 200–300, many of which are recruited from targeted schools (for an exception, see Simmonds, 2014). As a result, the current study sought to obtain a larger sample of educators (N~600) from a broad range of schools across the US through a citizen science website (TestMyBrain.org).

This citizen science approach also allowed us to recruit a large sample of individuals from the general public (N~3,000). Our goal was to explore a variety of factors that might predict belief in myths, including demographics, educational attainment, and career and neuroscience-related exposure. We predicted that the most common neuromyths found in previous studies (i.e., right-brain/left-brain learners; learning styles) would also be prominent among US samples.

We also predicted that the quality of an individual's neuroscience exposure would be related to belief in neuromyths, such that higher exposure to self-identified media might lead to more neuromyths, while higher exposure to academic neuroscience would lead to fewer neuromyths.

"Our findings suggest that while teachers are better able to identify neuromyths than the general public, they still endorse many of the same misconceptions at high rates. These results are quite consistent with a parallel study conducted by Dekker et al. (2012) in a sample from the UK and the Netherlands. Their study also reported that specific neuromyths showed a strikingly high prevalence among educators."


Learning Styles

Regarding learning styles theory, a meta-analysis from Pashler et al. (2008) reviewed findings from rigorous research studies testing learning styles theories and concluded that there was an insufficient evidence base to support its application to educational contexts.


For example, the VAK (Visual, Auditory, Kinesthetic) learning styles theory posits that each student has one favored modality of learning, and that teachers should identify students' preferred learning styles and create lesson plans aimed at these learning styles (i.e., if a student self-identifies as a visual learner, content should be presented visually; Lethaby and Harries, 2015). The premise that visual learners perform better when presented with visual information alone than when presented with auditory information and vice versa for auditory learners is known as the “meshing hypothesis” (Pashler et al., 2008).

While it is clear that many individuals have preferences for different styles of learning, Pashler et al. (2008) argue that the lack of empirical evidence for assessing these preferences and using them to inform instruction in order to improve student outcomes raises concerns about the pervasiveness of the theory and its near universal impact on current classroom environments.

Willingham et al. (2015) argue that limited time and resources in education should be aimed at developing and implementing evidence-based interventions and approaches, and that psychology and neuroscience researchers should communicate to educators that learning styles theory has not been empirically validated (Willingham et al., 2015).

Several authors have discussed the lack of evidence for the VAK learning styles theory (Pashler et al., 2008; Riener and Willingham, 2010; Willingham et al., 2015), but in classroom practice, teachers have adapted the theory to fit classroom needs. For example, teachers weave visual and auditory modalities into a single lesson rather than providing separate modality-specific lessons to different groups of children based on self-identified learning style preferences.


Hence, an unintended and potentially positive outcome of the perpetuation of the learning styles neuromyth is that teachers present material to students in novel ways through multiple modalities, thereby providing opportunities for repetition which is associated with improved learning and memory in the cognitive (for a review see Wickelgren, 1981) and educational literatures (for reviews, see Leinhardt and Greeno, 1986; Rosenshine, 1995).

Thus, the integration of multiple modalities can be beneficial for learning and this practice is conflated with the learning styles neuromyth. In other words, this particular neuromyth presents a challenge to the education field because it seems to be supporting effective instructional practice, but for the wrong reasons.

To dispel this particular myth might inadvertently discourage diversity in instructional approaches if it is not paired with explicit discussion of the distinctions between learning styles theory and multimodal instruction. This specific challenge reflects the broader need to convey nuances across disciplinary boundaries of education and neuroscience to best meet the instructional and learning needs of students and educators.

We would generally advocate for better information to dispel neuromyths that could be distributed broadly; however, the learning styles neuromyth appears to be a special case that requires deeper engagement with the educational community.

For example, coursework or professional development might be the most effective way to address questions and controversies about the learning styles neuromyth. This stands in contrast to other neuromyths, such as that we only use 10% of our brain, which might be more easily dispelled by a handout with a short justification.

Dyslexia and Letter Reversals

In contrast to the learning styles neuromyth, which might have unintended positive consequences, the neuromyth that dyslexia is characterized by seeing letters backwards is potentially harmful for the early identification of children with dyslexia and interferes with a deeper understanding of why readers with dyslexia struggle.


This idea about “backwards reading” originates from early visual theories of dyslexia (Orton, 1925). Such visual theories of dyslexia were rejected decades ago as it became clear that impairments in language abilities, primarily phonological awareness, formed the underpinnings of dyslexia (Shaywitz et al., 1999; Pennington and Lefly, 2001; Vellutino et al., 2004).

Some children with dyslexia do make letter reversals, but typically-developing children make reversals as well, particularly during early literacy acquisition (Vellutino, 1979). Such reversals early in literacy acquisition (i.e., kindergarten) are not related to later reading ability (i.e., 2nd-3rd grade) (Treiman et al., 2014). For children with dyslexia who make persistent letter reversals beyond the normative age, these reversals can best be understood as a consequence of poor reading and its associated cognitive impairments, rather than a cause of the reading problems.

One prominent theory regarding the mechanisms underlying letter reversals posits that the reversals are the results of phonological confusion, rather than visual confusion (Vellutino, 1979). This research clarifies that the core deficit in dyslexia is not visual, yet this myth is remarkably persistent among educators (Moats, 1994; Washburn et al., 2014).

One harmful effect of this neuromyth is evident in anecdotal reports from child assessment clinics where parents and teachers have delayed a referral for dyslexia because, though the child is struggling with reading, he/she is not reversing letters. Misunderstanding of the causal factors in dyslexia also leads to the persistence of visual interventions for reading that do not have an evidence base, and which may delay access to more effective phonologically-based treatments (Pennington, 2008, 2011; Fletcher and Currie, 2011).

Efforts to educate teachers, parents, and medical professionals about the true underlying causes of dyslexia continue through national professional associations (i.e., American Academy of Pediatrics, 2009, 2014and non-profit foundations like the International Dyslexia Association (i.e., Fletcher and Currie, 2011; Pennington, 2011).

Summary


Although training in education and neuroscience predicts better performance on neuromyths, such exposure does not eliminate the neuromyths entirely. Rather, some of the most common myths, such as those related to learning styles and dyslexia, remain remarkably prevalent (~50% endorsement or higher) regardless of exposure to education or neuroscience.


This finding is concerning because of the time and resources that many school districts may allocate toward pedagogical techniques related to these neuromyths that have very little empirical support. The findings reported in the current study create an opportunity for cross-disciplinary collaboration among neuroscientists and educators in order to develop a brief, targeted, and robust training module to address these misconceptions.

Read this entire paper with references HERE.

No comments:

Post a Comment